Search results for "Flat bands"
showing 6 items of 6 documents
Flat-band superconductivity in periodically strained graphene : mean-field and Berezinskii–Kosterlitz–Thouless transition
2020
In the search of high-temperature superconductivity one option is to focus on increasing the density of electronic states. Here we study both the normal and s-wave superconducting state properties of periodically strained graphene, which exhibits approximate flat bands with a high density of states, with the flatness tunable by the strain profile. We generalize earlier results regarding a one-dimensional harmonic strain to arbitrary periodic strain fields, and further extend the results by calculating the superfluid weight and the Berezinskii–Kosterlitz–Thouless (BKT) transition temperature T BKT to determine the true transition point. By numerically solving the self-consistency equation, w…
Thermodynamic, dynamic and transport properties of quantum spin liquid in herbertsmithite from experimental and theoretical point of view
2019
In our review we focus on the quantum spin liquid, defining the thermodynamic, transport and relaxation properties of geometrically frustrated magnets (insulators) represented by herbertsmithite $\rm ZnCu_{3}(OH)_6Cl_2$.
New state of matter: heavy-fermion systems, quantum spin liquids, quasicrystals, cold gases, and high temperature superconductors
2018
We report on a new state of matter manifested by strongly correlated Fermi systems including various heavy-fermion (HF) metals, two-dimensional quantum liquids such as $\rm ^3He$ films, certain quasicrystals, and systems behaving as quantum spin liquids. Generically, these systems can be viewed as HF systems or HF compounds, in that they exhibit typical behavior of HF metals. At zero temperature, such systems can experience a so-called fermion-condensation quantum phase transition (FCQPT). Combining analytical considerations with arguments based entirely on experimental grounds we argue and demonstrate that the class of HF systems is characterized by universal scaling behavior of their ther…
Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite
2018
We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transiti…
Flat bands and strongly correlated Fermi systems
2019
Many strongly correlated Fermi systems including heavy-fermion (HF) metals and high-Tc superconductors belong to that class of quantum many-body systems for which Landau Fermiliquid (LFL) theory fails. Instead, these systems exhibit non-Fermi-liquid properties that arise from violation of time-reversal (T) and particle-hole (C) invariance. Measurements of tunneling conductance provide a powerful experimental tool for detecting violations of these basic symmetries inherent to LFLs, which guarantee that the measured differential conductivity dI/dV, where I is the current and V the bias voltage, is a symmetric function of V. Thus, it has been predicted that the conductivity becomes asymmetric …
Topological properties of mono- and multilayer graphene, flat bands and surface superconductivity
2015
Tutustun Pro Gradu -työssäni topologisiin materiaaleihin ja perehdyn grafeenin sekä romboedrisen grafiitin ominaisuuksiin tästä näkökulmasta. Erityisesti tutkin grafeenin alihilasymmetrian rikkoutumisen vaikutuksia grafiitissa lisäämällä heilahtelevan potentiaalin α grafeenin tight-binding -malliin. Lasken romboedrisen grafiitin matalaenergiatilat tight-binding -mallista ja saan tulokseksi, että α avaa energia-aukon, mutta säilyttää vyön tasomaisen muodon, joka on saatu artikkelissa [16]. Tutkin työssäni myös heilahtelevan potentiaalin vaikutusta romboedrisen grafiitin suprajohtaviin pintatiloihin. Päätulokseni on, että heilahteleva potentiaali rikkoo grafiitin pintojen välisen symmetrian j…